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Research Plan

Deciphering Deep Learning

How does stochastic gradient descent implement algorithms?

1 Summary of the research plan

Deep learning – optimizing deep neural networks (DNNs) with stochastic gradient descent (SGD) – is

the technological breakthrough powering both specialized systems like Alphafold for protein folding [28],

generally capable large language model (LLM)1 based assistants [1], as well as many other learning-

based systems that have been built within the last two decades [32, 54, 48]. Almost by construction the

algorithms encoded in the hundreds of billions of parameters2 of DNNs are not human interpretable by

default. Thus, DNNs are often referred to as “black-boxes”.

Mechanistic interpretability (MI), an emerging field dedicated to reverse-engineering DNNs, has begun

opening up these “black-boxes”. Pioneering work has discovered fundamental circuits3 for in-context

learning (ICL) [43], methods to edit factual knowledge [36], and more [61, 10, 7]. However, the field is

young and has research gaps even for well-studied phenomena. For example, it is still unclear how exactly

LLM pretraining using next-token4 prediction leads to ICL capabilities, how it leads to language-agnostic

representations [68], and how any of this is implemented within LLMs. The same goes for how instruction

tuning on a variety of tasks leads to generalization to unseen tasks [62], or what mechanistically happens

when an LLM gets tuned to become a reasoner [11]. Simultaneously, as the field matures, it raises the

question of whether MI tools help to extract scientific insights from specialized models like Alphafold.

The goal of my research plan is to leverage and create MI tools [41, 19, 10, 35, 3] to take high-

resolution measurements of these phenomena in an effort to gain novel insights into DNNs’ internal

mechanisms and their learning dynamics. To do so, I will combine controlled studies of toy models with

the analysis of large real-world models like in my previous work [68, 13, 37, 57, 5]. This will result

in novel MI methods (in particular, for reasoners and Alphafold), infrastructure, and implementations

supporting such analyses, interactive visualizations, and novel insights packaged into research papers.

Importantly, the current research landscape with an increasing number of powerful DNNs, their

training data, code, and intermediate checkpoints becoming publicly available [20] for the first time

allows for this kind of research without incurring prohibitive computational and human labor costs.

Prof. David Bau’s NDIF5 team also plays a key role in building the infrastructure to support MI

research. In other words, the stars are aligned now for executing my research plan in Prof. Bau’s lab.

Conducting this research will add to the empirical foundation for the deep learning theory of the

future. A better mechanistic understanding of DNNs will unlock novel data-efficient ways for us to tailor

them to our needs, e.g., to make them multicultural and safe. Further, it will help advance MI methods

towards a point at which they allow us to extract scientific insights from models like Alphafold.

1LLMs are transformer architecture [60] based DNNs trained on language.
2We have learned bigger is better in the case of DNNs [30].
3Circuits refer to a subnetwork within a DNN explaining its behavior on a specific task (e.g., on a specific dataset).
4Tokens are usually sub-words.
5https://ndif.us
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2 Research plan

2.1 Current state of research in the field

LLM-based systems like instruction and reasoning models are trained over multiple stages. The first

stage is called self-supervised pretraining and consists of teaching the LLM to predict the next-token

in an internet-scale corpus. Remarkably, LLMs of a sufficient size trained in this way exhibit ICL ca-

pabilities [6] that allow them to learn from their input context (e.g., when a few input-output pairs

are provided) without updating model parameters. Additionally, they learn multilingual representa-

tions [68] facilitating cross-lingual transfer [33] in the subsequent stages. Next, this is followed by super-

vised finetuning in which the LLM is tuned on a curated dataset teaching it the desired behavior, e.g.,

instruction-following [62] or reasoning [11]. Remarkably, finetuning on a large set of diverse tasks leads

to generalization to unseen tasks. Finally, the target behavior is refined using reinforcement learning

(RL). RL allows to exceed the quality of the finetuning dataset and instilling additional behaviors such

as preventing harmful outputs [11, 1].

Mechanistic interpretability. The outlined training procedure raises the question whether LLMs’

remarkable capabilities are genuine or an artifact of, e.g., data contamination. How exactly are they

implemented within the LLMs’ internal computations and how do they form during training? Reverse

engineering LLMs’ internal algorithms using MI presents a promising approach to address such questions

from a new angle grounded in experiments. E.g., useful MI techniques include intermediate decoding [41,

19], sparse autoencoders for finding interpretable features [14, 3, 10], activation patching-based causal

analysis [36, 58], and automatic circuit finding [35].

2.1.1 Open questions

In the following, I outline my research questions and the state of the field.

RQ1: How do ICL capabilities form? The fact that next-token prediction leads to ICL capabil-

ities is a puzzling finding. Olsson et al. [43] have identified induction circuits implementing the behavior

“AB ... A → B”, in which A and B are tokens, and fuzzy versions of it as a fundamental mechanism

underlying ICL. Prof. Bau’s lab has identified function vectors [58] (in parallel with [21]), encoding

which task should be executed on the current token, as another component to ICL. Yang et al. [69]

have studied task vectors’ formation in toy models trained on, e.g., regression tasks, using next-token

prediction and provided a training method encouraging their formation. Bigoulaeva et al. [2] have shown

that instruction tuning and ICL performance are correlated, which suggests that instruction-following

circuits reuse ICL ones.

RQ2: How do multilingual representations form? In my own MI work, I found evidence

for LLMs possessing language-agnostic representations [68, 13, 5]. However, little is known about their

training dynamics. To the best of my knowledge, the most closely related work is [47], which tracks the

evolution of a multilingual n-gram circuit across training.

RQ3: How does instruction tuning lead to broad generalization? Jain et al. [26] have

started to investigate this phenomenon in toy models trained on synthetic settings and find that circuits

are heavily reused. This finding is consistent with our findings in [37]. Leveraging circuit reuse might be a

promising angle for studying RQ3 in real models. Additionally, a recent variation of sparse autoencoders,

called cross-coders [34], allows for the systematic comparison of base and finetuned models.

RQ4: How does a LLM become a reasoner? General purpose reasoners like OpenAI’s o1

model [25] are the major breakthrough of last year. By scaling up inference compute [56] they achieve

superior performance across a wide range of tasks. Notably, o3 a recent iteration of o1 led to a 30% jump

in performance on the ARC-AGI benchmark [9], on which LLM-based solutions barely progressed for
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the last three years. Up until the recent release of the Deepseek’s R1 models [11] this month (January

2025), there was no such model openly available. Thus, while there are many interesting questions about

reasoner’s internals to ask, they only recently can be studied. Since reasoners search over multiple chains-

of-thoughts (CoTs)6, their outputs are long and provide unique challenges for MI. Most MI research still

focuses on the next-token prediction setting. Cabannes et al. [7] study in toy models and might provide

a good starting point for my analysis of the R1 models.

RQ5: Is it possible to extract scientific insights from Alphafold? As the field of MI matures

it becomes conceivable that we will be able to turn powerful DNNs trained on scientific data into cheat

sheets for the underlying phenomena. Schut et al. [50] show that it is possible to extract super-human

chess concepts teachable to grandmasters from AlphaGo’s internal representations [54]. For simpler

protein language models (PLMs) it has been shown that they can learn interpretable concepts [55, 24].

2.2 Current state of my own research

LLM interpretability. My works on MI for LLMs are the most relevant for this research plan. In

[68] I investigated whether multilingual LLMs pretrained on English-dominated text learn to leverage

English as internal pivot language. While I did not find that English is used as a pivot in the literal

sense, for simple word-level tasks, I found that independent of the prompt language the English solution

can be decoded from the middle layers using the logit lens [41]. I concluded that this is likely caused

by the LLMs learning language-agnostic concept representations, which I followed up on with a causal

analysis using activation patching in [13]. Simultaneously, we leveraged our finding to extend contrastive

decoding to multilingual inputs in [70]. In our most recent work [5] we leveraged sparse autoencoders

to study grammatical concepts in the multilingual setting. We found that independent of the language

composition of the pretraining corpus, highly multilingual grammatical features are learned.

In a different stream of work [37] we investigated how LLMs balance between the information provided

in the context and their prior knowledge learned during pretraining in simple question-answering settings.

This project was led by Julian Minder, who I advised on a master thesis on LLM circuit dynamics.

Leveraging insights from his thesis, namely, that LLMs’ circuits don’t change too much during finetuning

and are heavily reused, we identified an one-dimensional subspace causally controlling context sensitivity.

Importantly, we showed that the subspace transfers back to both base and instruct models. A similar

approach leveraging similarities of close-by checkpoints should be applicable to RQ1–RQ4.

In all of our papers, we were able to replicate our main findings across a wide range of tasks and

models differing in sizes and model families. The universality of our results so far makes me optimistic

about my future research in this area and its potential.

Text-to-image interpretability. In [57] we extended sparse autoencoders to SDXL Turbo, a recent

text-to-image model. In this work, we showed that MI techniques developed for LLMs can be adapted to

other modalities, which will be important for RQ5. In doing so, we found that different parts of SDXL

Turbo specialize in distinct roles like image composition, adding local details, or adding style.

Other research. I contributed to works on constrained decoding [17, 18] ensuring LLM outputs

to comply with context-free grammars. Further, I did a PhD on machine learning on data indexed by

powersets, lattices, and partially ordered sets [64]. In the scope of my PhD research, I extended my

PhD advisors’ theory of algebraic signal processing to new domains and problems [65, 38, 44, 45, 51, 52],

leveraged it to build various learning techniques based on our own notion Fourier-sparsity and used them

to build applications [66, 63, 67, 53, 8, 39]. Other than that, I participated and ranked first in the student

leaderboard in a machine learning for combinatorial optimization competition [59].

6CoT refers to natural language reasoning trails consisting of intermediate results and their derivations.
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2.3 Detailed research plan

I will collaborate with Prof. David Bau and his research group renowned in the area of MI. The group

has multiple ongoing research directions relevant to my research plan (see below). In addition to their MI

expertise, the lab provides a unique computational infrastructure called national deep inference fabric

(NDIF). NDIF serves as a back-end to their nnsight library [15] that allows access to internal states of

DNNs. NDIF and nnsight together allow for the analysis of even the largest openly available models

like Llama-3.1-405B [12].

In order to approach my research questions (RQ1 – RQ5) outlined in Sec. 2.1, I will break them

down into four projects, P1, P2, P3 and P4. In P1 (Sec. 2.3.1) I will create minimal examples of the

target learning dynamics. In P2 (Sec. 2.3.2) I will investigate them in real models, with a focus on broad

generalization. In P3 (Sec. 2.3.3) I will investigate LLM-based reasoners. Finally, in P4 (Sec. 2.3.4) I

will investigate the feasibility of concept extraction for Alphafold.

2.3.1 Project 1: Minimal examples of target dynamics

MI analyses of toy models have provided fresh angles onto ICL [43], superposition [14], and grokking [40].

The goal of this project is to create minimal examples of the target learning dynamics as well as to

understand them mechanistically. In particular, I want to do so for the creation of reasoners (milestone

M1.1) and for broad generalization akin to what we observe in instruction tuning (milestone M1.2).

Using board games it is straightforward to train reasoners by following the recipe of, e.g., AlphaGo [54].

This also has been done in the next-token prediction setting we are interested in to study inference

compute scaling laws [27]. In this setting many natural MI questions come up: do the models learn to

look ahead, to self-verify, to model the reward, etc.? How do mechanisms found in the reasoner relate

to its base model?

Next, we can add the construction from [23] that transforms the Orthello board game into a testbed

of multilingualism by creating different sequence representations of game trajectories. The resulting

setting allows for the study of broad generalization and whether language-agnostic representations are

the key mechanism behind it.

Methodology. Highly controlled settings like this allow for the development of automated in-

terpretability techniques. In particular, sub-component probing [4, 16] achieved via manually decom-

posing a problem into its sub-components is a promising technique. For board games, the following

sub-components directly come to mind: (1.) board state, (2.) current player, (3.) legal next moves, (4.)

value of the board, etc. If it is possible to train accurate sub-component probes, this hints at the exis-

tence of corresponding mechanisms within the model. Additionally, tracking probing performance across

checkpoints should provide hints about how these mechanisms form. Importantly, minimal examples

allow for short development cycles. Further, experiments will be cheap enough to verify the robustness

of our results through repetitions and sensitivity analysis with respect to hyperparameters.

Alternatives. To study the broad generalization question and its connection to ICL also other

constructions come to mind. E.g., as mentioned ICL has been studied in the context of simple regression

tasks [69]. Additionally, Prof. Bau’s lab is currently setting up toy models displaying ICL capabilities by

letting them fill out Cayley tables of groups with randomly relabeled elements. Another more realistic

testbed for multilingualism is the creation of cloned languages [49]. The recent paper [29] provides nice

ideas for the construction of perturbed cloned languages. A more realistic setting for general reasoners

potentially can be achieved by teaching language models of modest size how to execute code step by step

by training them on intermediate outputs derived from a debugger.
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2.3.2 Project 2: Broad generalization in the wild

Intermediate checkpoints of powerful models like OLMO [20, 42] allow us to study RQ1 and RQ2 in

real LLMs without incurring prohibitive costs. On top of that, their accompanying training code and

instruction-following datasets allow for the creation of intermediate checkpoints for the study of RQ3.

Pretraining. Tools for the tracking the presence of ICL capabilities (RQ1) can derived from Prof.

Bau’s work [58] and from [43]. Similarly, tools for tracking the presence of language-agnostic represen-

tations (RQ2) can be derived from my work [68, 13, 5]. Evaluating the intermediate checkpoints using

these tools should allow for the identification of phase transitions in learning trajectories indicative of

the formation of ICL capabilities and language-agnostic representations. Next, the analysis of these

phase transitions will inform the creation of automatic MI pipelines akin to the sub-component tracking

described in Sec. 2.3.1. The resulting pipeline should allow for higher resolution measurements of the

circuits’ formation (milestone M2.1).

Finetuning. As a next step, we are going to create our own intermediate checkpoints for multiple

instruction tuning trajectories for studying RQ3. In order to do so, we control how many tasks we

introduce as well as when and from which task-families (math, code, question answering, natural language

processing tasks, etc.). Since instruction tuning has not been much studied through the lens of MI,

we cannot rely on existing results. Thus, I consider it already a milestone to better understand how

instruction-following capabilities work and how they form (M2.2). It would be interesting to find out

whether instruction-following models mainly reuse existing mechanisms from the base model such as

induction circuits and function vectors or whether they do more than that. Also it would be interesting

to find whether there is a shared general instruction-following circuit or many task-specific ones.

Additional methods. Additional methods facilitating the analysis of different checkpoints of the

same training trajectory include (1.) the systematic comparison of next-token distributions across multi-

ple tokens [46], which allows to find key token positions for which the base and finetuned models disagree;

(2.) a more costly method of training cross-coders that are aimed at identifying both shared as well as

different features between the compared checkpoints [34]; and (3.) the analysis of gradient updates di-

rectly by extending [31]; As the training progresses and the models’ internal states become meaningful,

so should also their gradients.

2.3.3 Project 3: Reasoners and meta-reasoners

The recent open-source release of Deepseek-R1 and its distillations into smaller models [11] opens up

many interesting research directions. Due to the unique requirements of analyzing long multi-token

outputs as they are produced by CoT I expect that we will need to create novel MI methods (milestone

M3.1). In fact, in an ongoing project with researchers from EPFL and ETH Zurich, in which we analyze

LLMs on a theory of mind tasks we are currently held back by the lack of availability of methods that

would allow us to track the evolution of the true world state along with various belief states of the

different actors along a CoT produced by a model. For the creation of these methods comparing base

and CoT model next-token distributions akin to [46] could allow to identify interesting token positions

and thereby reduce the complexity of the analysis. Additionally, the work by [7] on iteration circuits

describing how CoT works in toy models will be a good starting point.

Next, I am going to investigate whether I can find human interpretable elements of reasoning within

the internal states and computations of reasoners. E.g., mechanisms for recognizing which algorithm to

run and how to run it; mechanisms for deciding the next step, e.g., look ahead mechanisms; mechanisms

for self-verification; mechanisms for reward modeling; In order to approach this search, I will work

together with Alex Loftus a PhD student in Prof. Bau’s lab and leverage the full MI toolkit (in particular,

the methods from Sec. 2.3.1 and Sec. 2.3.2).
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Finally, I am curious about whether the reasoners’ capabilities can be explained via the capabilities of

its base model (RQ4). E.g., if we find elements of reasoning in Deepseek-R1, can we trace their origins

back to its base model or does reasoning tuning lead to something fundamentally new and different?

The second milestone of this project is to find elements of reasoning in reasoners and to relate them to

the corresponding base model (M3.2).

2.3.4 Project 4: Super-human concepts in Alphafold

Despite the remarkable success of LLMs some of the most groundbreaking accomplishments driven by

deep learning are achieved on non-verbal scientific domains. Alphafold [28] achieving super-human7

performance on the protein folding task is the prime example of this. Instead of manually implementing

a protein folding algorithm (which up until today is an impossible task), they discovered one using

SGD – Alphafold, a DNN that maps from an augmented amino-acid sequence of a protein to the 3D

structure of its crystallized form. However, whatever super-human insight “SGD might have had” when

implementing this protein folding algorithm remains encrypted in the parameters of the Alphafold DNN.

My final project aims to change that and to extract super-human insights from Alphafold (RQ5).

In order to achieve this ambitious goal, we are going to follow the footsteps of the pioneering work of

Schut et al. [50], which achieved the successful extraction of super-human chess concepts from AlphaGo

that were also teachable to chess grandmasters. While the Alphafold uses a specialized architecture, e.g.,

using triangle attention to iteratively refine the representations of the distance matrix encoding spatial

relationships between pairs of amino acids, from a MI point of view it still should be amenable to the

concept extraction techniques used in [50]. Additionally, these techniques can be updated to leverage

the most recent MI breakthroughs such as sparse autoencoders [3, 10]. My experience in porting sparse

autoencoders to few-step text-to-image diffusion models [57] will be helpful for that. To set up and

test our Alphafold concept discovery pipeline we can check whether Alphafold’s representations encode

known protein properties (milestone M4.1). To create datasets for that, we can follow the construction

of [24] who build a dataset encompassing more than 700 protein properties.

Next, some of the concept filtering techniques akin to [50] based on intermediate training check-

points, which allow to filter for concepts forming at different stages in training and for concepts that

are teachable to weaker checkpoints, can be used to find potentially super-human concepts (e.g., formed

late in training). To address the additional challenge of this domain, which is that both inputs (amino

acid sequences) and outputs (3D protein structures) are not easy to interpret, we will have to create

high quality visualizations of the found concepts. For each concept, we will collect all of the amino acid

sequences that result in the presence of the concept within Alphafold’s representations as well as all of

the resulting 3D structures. For each protein, we will also highlight the most relevant subsequences in

the sequence data and substructures in the 3D data. Finally, we are going to iteratively analyze and

refine these visualizations together with biologists (milestone M4.2).

Risks and alternatives. Since I am not a trained biologist, for this project to succeed it will be

important to find collaborators with a solid biological background. Prof. Bau is excited about this

direction too and willing to hire a PhD student with the relevant background. Since M4.2 may fail

due to unforeseen complications (e.g., difficulties finding collaborators) or may fail to deliver the desired

super-human insights, I have a back-up direction. In short, this direction consists of extending our work

Surkov et al. [57] to handle diffusion models with many denoising steps and to recent models like FLUX 8

or text-to-video models [22]. Prof. Bau’s lab also has a relevant work-stream led by Rohit Gandikota.

7Not only humans obviously cannot fold proteins outside of their body, but also they cannot explicitly write an efficient

algorithm that does so.
8https://huggingface.co/black-forest-labs/FLUX.1-dev
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[17] Saibo Geng, Berkay Döner, Chris Wendler, Martin Josifoski, and Robert West. Sketch-guided con-

strained decoding for boosting blackbox large language models without logit access. In Proceedings

of the Association for Computational Linguistics, 2024.

[18] Saibo Geng, Sankalp Gambhir, Chris Wendler, and Robert West. Byte BPE tokenization as an

inverse string homomorphism. arXiv preprint arXiv:2412.03160, 2024.

[19] Asma Ghandeharioun, Avi Caciularu, Adam Pearce, Lucas Dixon, and Mor Geva. Patchscope:

A unifying framework for inspecting hidden representations of language models. arXiv preprint

arXiv:2401.06102, 2024.

[20] Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,

Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerating

the science of language models. arXiv preprint arXiv:2402.00838, 2024.

[21] Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. In The 2023

Conference on Empirical Methods in Natural Language Processing, 2023.

[22] Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale pre-

training for text-to-video generation via transformers. In The Eleventh International Conference on

Learning Representations, 2022.

[23] Tianze Hua, Tian Yun, and Ellie Pavlick. mOthello: When do cross-lingual representation align-

ment and cross-lingual transfer emerge in multilingual models? In Findings of the Association for

Computational Linguistics: NAACL 2024, pages 1585–1598, 2024.

[24] Aya Abdelsalam Ismail, Tuomas Oikarinen, Amy Wang, Julius Adebayo, Samuel Stanton, Taylor
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[52] Bastian Seifert, Chris Wendler, and Markus Püschel. Causal Fourier analysis on directed acyclic

graphs and posets. IEEE Transactions on Signal Processing, 2022.
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set functions that are sparse in non-orthogonal Fourier bases. In Proceedings of the AAAI Conference

on Artificial Intelligence, pages 10283–10292, 2021.

[68] Chris Wendler, Veniamin Veselovsky, Giovanni Monea, and Robert West. Do Llamas work in

English? on the latent language of multilingual transformers. In Proceedings of the Association for

Computational Linguistics, 2024.

[69] Liu Yang, Ziqian Lin, Kangwook Lee, Dimitris Papailiopoulos, and Robert Nowak. Task vectors in

in-context learning: Emergence, formation, and benefit. arXiv preprint arXiv:2501.09240, 2025.

[70] Wenhao Zhu, Sizhe Liu, Shujian Huang, Shuaijie She, Chris Wendler, and Jiajun Chen. Multilin-

gual contrastive decoding via language-agnostic layers skipping. In Findings of the Association for

Computational Linguistics: EMNLP 2024, pages 8775–8782, 2024.

11


	Summary of the research plan
	Research plan
	Current state of research in the field
	Open questions

	Current state of my own research
	Detailed research plan
	Project 1: Minimal examples of target dynamics
	Project 2: Broad generalization in the wild
	Project 3: Reasoners and meta-reasoners
	Project 4: Super-human concepts in Alphafold



